An exoskeleton force feedback master finger distinguishing contact and non-contact mode

Honggen Fang*, Zongwu Xie, Hong Liu, Tian Lan, Jinjun Xia

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Citations (Scopus)

Abstract

In this paper, a new type of master finger in exoskeleton type has been developed to implement master-slave operation for DLR/HIT dexterous hand. The finger has three novel characteristics. Firstly, the exoskeleton mechanism uses "four-bar mechanism joint", which rotates about an instant center that coincides with joint center of operator's finger. Secondly, the master finger can distinguish the contact and non-contact mode. The two modes enable free motion and natural contact sensation between operator and master finger respectively. Thirdly, the master finger can exert forces in the direction of extension and flexion because it can make active motion in the two directions. In order to assure faster data transmission and near zero delay in master-slave operation, a digital signal processing/field programmable gate array (DSP/FPGA-FPGA) structure is proposed to control the master finger. The kernel of the hardware system consists of a peripheral component interface (PCI)-based DSP/FPGA board configured as high-level and a FPGA board configured as low-level. By utilizing low-voltage differential signaling (LVDS) serial data bus and PCI bus, the high-level can communicate with the low-level and PC. Using the principle of Virtual work, the relationship between driving torque and the force acting at the tip of master finger is acquired and validated by an experiment conducted to the operation of master finger and DLR/HIT dexterous finger. Experimental results also demonstrate that the master finger can augment telepresence.

Original languageEnglish
Title of host publication2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009
Pages1059-1064
Number of pages6
DOIs
Publication statusPublished - 2009
Event2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009 - Singapore, Singapore
Duration: 14 Jul 200917 Jul 2009

Publication series

NameIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM

Conference

Conference2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2009
Country/TerritorySingapore
CitySingapore
Period14/07/0917/07/09

Fingerprint

Dive into the research topics of 'An exoskeleton force feedback master finger distinguishing contact and non-contact mode'. Together they form a unique fingerprint.

Cite this