Abstract
A novel noncentrosymmetric calcium borate, Ca2[B5O9]·(OH)·H2O (1), was synthesized under solvothermal condition using mixed solvents of pyridine and H2O. Compound 1 crystallizes in the monoclinic space group Cc. Its structure contains [B5O12] units and features a three-dimensional (3D) pcu net with nine-membered ring (9-MR) channels along the b-axis, where the Ca2+ cations, OH- ions, and H2O molecules are located. Each Ca polyhedron shares three edges and one vertex with four neighbors to form a 3D dia Ca-O network. The pcu B-O net and dia Ca-O net are further interpenetrated to give the final denser net. The second harmonic generation (SHG) measurement shows that compound 1 is a type I phase-matchable material with a strong SHG response of ∼3 times that of KH2PO4. In addition, it exhibits a wide transparency range with a short UV cutoff edge below 200 nm. These results reveal that the compound is a potential deep-UV nonlinear optical material. The Vienna ab initio theoretical studies indicate the good SHG response is derived from the synergistic effect of the conjugated systems of BO3 groups and distorted CaO9 polyhedra.
Original language | English |
---|---|
Pages (from-to) | 11757-11763 |
Number of pages | 7 |
Journal | Inorganic Chemistry |
Volume | 53 |
Issue number | 21 |
DOIs | |
Publication status | Published - 3 Nov 2014 |