TY - JOUR
T1 - Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries
AU - Cheng, Xin Bing
AU - Huang, Jia Qi
AU - Zhang, Qiang
AU - Peng, Hong Jie
AU - Zhao, Meng Qiang
AU - Wei, Fei
PY - 2014/3
Y1 - 2014/3
N2 - The use of conductive carbon scaffolds is efficient and effective to obtain advanced composite cathodes for lithium-sulfur batteries. However, the loading amount of mostly less than 70 wt% induces a limited energy density and the typical fabrication route involving high-temperature and elaborate process also limits the manufacturability of sulfur cathode, both of which hinder the practical application of lithium-sulfur batteries. Herein, a scalable, room-temperature, and one-step method is employed for carbon nanotube (CNT)/sulfur composite cathode, in which aligned CNTs served as interconnected conductive scaffolds to accommodate sulfur. When the loading amount of sulfur increased from 50 to 90wt%, the tap density of CNT/sulfur increased from 0.4 to 1.98gcm-3, and the mass/areal/volumetric capacities of the whole electrodes (CNT/sulfur composites and binders) was improved from 500.3mAhg-1/0.298 mAhcm-2/200.1mAhcm-3 to 563.7mAhg-1/0.893 mAhcm-2/1116.0mAhcm-3, respectively. The rise of sulfur content in the composite cathode renders a dramatic increase of the energy density of lithium-sulfur cells. The ultra-high loading amount of sulfur is attributed to the open, ordered, straight pore structure of aligned CNT scaffolds for the uniform distribution of fine sulfur particles. The robust sp2 carbon frameworks served as rapid pathways for electron transfer, and the large aspect ratio, good alignment, ordered packing of individual CNT in small bundles offer a low conductive percolation threshold. Consequently, the sulfur with a high loading content was efficiently utilized for a lithium-sulfur cell with a much improved energy density.
AB - The use of conductive carbon scaffolds is efficient and effective to obtain advanced composite cathodes for lithium-sulfur batteries. However, the loading amount of mostly less than 70 wt% induces a limited energy density and the typical fabrication route involving high-temperature and elaborate process also limits the manufacturability of sulfur cathode, both of which hinder the practical application of lithium-sulfur batteries. Herein, a scalable, room-temperature, and one-step method is employed for carbon nanotube (CNT)/sulfur composite cathode, in which aligned CNTs served as interconnected conductive scaffolds to accommodate sulfur. When the loading amount of sulfur increased from 50 to 90wt%, the tap density of CNT/sulfur increased from 0.4 to 1.98gcm-3, and the mass/areal/volumetric capacities of the whole electrodes (CNT/sulfur composites and binders) was improved from 500.3mAhg-1/0.298 mAhcm-2/200.1mAhcm-3 to 563.7mAhg-1/0.893 mAhcm-2/1116.0mAhcm-3, respectively. The rise of sulfur content in the composite cathode renders a dramatic increase of the energy density of lithium-sulfur cells. The ultra-high loading amount of sulfur is attributed to the open, ordered, straight pore structure of aligned CNT scaffolds for the uniform distribution of fine sulfur particles. The robust sp2 carbon frameworks served as rapid pathways for electron transfer, and the large aspect ratio, good alignment, ordered packing of individual CNT in small bundles offer a low conductive percolation threshold. Consequently, the sulfur with a high loading content was efficiently utilized for a lithium-sulfur cell with a much improved energy density.
KW - Aligned carbon nanotube
KW - Cathode
KW - Composite
KW - Energy storage
KW - Lithium sulfur battery
UR - http://www.scopus.com/inward/record.url?scp=84892468524&partnerID=8YFLogxK
U2 - 10.1016/j.nanoen.2013.12.013
DO - 10.1016/j.nanoen.2013.12.013
M3 - Article
AN - SCOPUS:84892468524
SN - 2211-2855
VL - 4
SP - 65
EP - 72
JO - Nano Energy
JF - Nano Energy
ER -