Aggregation-induced preparation of ultrastable zinc sulfide colloidal nanospheres and their photocatalytic degradation of multiple organic dyes

Wanting Yang, Xiaoli Liu, Dong Li, Louzhen Fan, Yunchao Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Monodispersed and ultrastable colloidal ZnS nanospheres (NPs) composed of tiny nanoparticles were successfully synthesized by using a limited ligand-induced in situ aggregation strategy. With such a strategy, the whole size as well as the particle size of those ZnS NPs could be tuned simultaneously by appropriately varying the reaction conditions. Three representative ZnS NP samples with different sphere sizes and particle sizes were thus obtained, which were all proven to possess rather large surface areas, robust structures and excellent colloidal stability. Furthermore, the photocatalytic activities of the as-prepared ZnS NPs toward the photodegradation of eosin B, methylene blue and their binary mixture were explored respectively. An interesting size-dependent degradation performance associated with the ZnS NPs was observed in all the photodegradation cases. Finally, their degradation mechanism was fully elucidated according to the control experiments under different atmospheres in combination with the related energy level information. We believe that the control strategy for tuning the fine and whole structures of spherical nanostructures in a synergistic manner together with the structure-dependent photodegradation performance revealed herein will definitely benefit the fabrication of highly efficient photocatalysts as well as the nanocomplexes with hierarchical architectures.

Original languageEnglish
Pages (from-to)14532-14541
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume17
Issue number22
DOIs
Publication statusPublished - 14 Jun 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Aggregation-induced preparation of ultrastable zinc sulfide colloidal nanospheres and their photocatalytic degradation of multiple organic dyes'. Together they form a unique fingerprint.

Cite this