AdaFGL: A New Paradigm for Federated Node Classification with Topology Heterogeneity

Xunkai Li, Zhengyu Wu, Wentao Zhang, Henan Sun, Rong Hua Li*, Guoren Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recently, Federated Graph Learning (FGL) has attracted significant attention as a distributed framework based on graph neural networks, primarily due to its capability to break data silos. Existing FGL studies employ community split on the homophilous global graph by default to simulate federated semisupervised node classification settings. Such a strategy assumes the consistency of topology between the multi-client subgraphs and the global graph, where connected nodes are highly likely to possess similar feature distributions and the same label. However, in real-world implementations, the varying perspectives of local data engineering result in various subgraph topologies, posing unique heterogeneity challenges in FGL. Unlike the well-known label Non-independent identical distribution (Non-iid) problems in federated learning, FGL heterogeneity essentially reveals the topological divergence among multiple clients, namely homophily or heterophily. To simulate and handle this unique challenge, we introduce the concept of structure Non-iid split and then present a new paradigm called Adaptive Federated Graph Learning (AdaFGL), a decoupled two-step personalized approach. To begin with, AdaFGL employs standard multi-client federated collaborative training to acquire the federated knowledge extractor by aggregating uploaded models in the final round at the server. Then, each client conducts personalized training based on the local subgraph and the federated knowledge extractor. Extensive experiments on the 12 graph benchmark datasets validate the superior performance of AdaFGL over state-of-the-art baselines. Specifically, in terms of test accuracy, our proposed AdaFGL outperforms baselines by significant margins of 3.24 % and 5.57 % on community split and structure Non-iid split, respectively.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE 40th International Conference on Data Engineering, ICDE 2024
PublisherIEEE Computer Society
Pages2517-2530
Number of pages14
ISBN (Electronic)9798350317152
DOIs
Publication statusPublished - 2024
Event40th IEEE International Conference on Data Engineering, ICDE 2024 - Utrecht, Netherlands
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - International Conference on Data Engineering
ISSN (Print)1084-4627
ISSN (Electronic)2375-0286

Conference

Conference40th IEEE International Conference on Data Engineering, ICDE 2024
Country/TerritoryNetherlands
CityUtrecht
Period13/05/2417/05/24

Keywords

  • Federated Learning
  • Graph Neural Networks
  • Graph Representation Learning
  • Topology Heterogeneity

Fingerprint

Dive into the research topics of 'AdaFGL: A New Paradigm for Federated Node Classification with Topology Heterogeneity'. Together they form a unique fingerprint.

Cite this