A two-stage deep domain adaptation method for hyperspectral image classification

Zhaokui Li*, Xiangyi Tang, Wei Li, Chuanyun Wang, Cuiwei Liu, Jinrong He

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

Deep learning has attracted extensive attention in the field of hyperspectral images (HSIs) classification. However, supervised deep learning methods heavily rely on a large amount of label information. To address this problem, in this paper, we propose a two-stage deep domain adaptation method for hyperspectral image classification, which can minimize the data shift between two domains and learn a more discriminative deep embedding space with very few labeled target samples. A deep embedding space is first learned by minimizing the distance between the source domain and the target domain based on Maximum Mean Discrepancy (MMD) criterion. The Spatial-Spectral Siamese Network is then exploited to reduce the data shift and learn a more discriminative deep embedding space by minimizing the distance between samples from different domains but the same class label and maximizes the distance between samples from different domains and class labels based on pairwise loss. For the classification task, the softmax layer is replaced with a linear support vector machine, in which learning minimizes a margin-based loss instead of the cross-entropy loss. The experimental results on two sets of hyperspectral remote sensing images show that the proposed method can outperform several state-of-the-art methods.

Original languageEnglish
Article number1054
JournalRemote Sensing
Volume12
Issue number7
DOIs
Publication statusPublished - 1 Apr 2020

Keywords

  • Convolutional neural network
  • Deep domain adaptation
  • Hyperspectral image classification
  • MMD
  • Spatial-Spectral Siamese Network

Fingerprint

Dive into the research topics of 'A two-stage deep domain adaptation method for hyperspectral image classification'. Together they form a unique fingerprint.

Cite this