TY - JOUR
T1 - A tied Fermi liquid to Luttinger liquid model for nonlinear transport in conducting polymers
AU - Wang, Jiawei
AU - Niu, Jiebin
AU - Shao, Bin
AU - Yang, Guanhua
AU - Lu, Congyan
AU - Li, Mengmeng
AU - Zhou, Zheng
AU - Chuai, Xichen
AU - Chen, Jiezhi
AU - Lu, Nianduan
AU - Huang, Bing
AU - Wang, Yeliang
AU - Li, Ling
AU - Liu, Ming
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Organic conjugated polymers demonstrate great potential in transistors, solar cells and light-emitting diodes, whose performances are fundamentally governed by charge transport. However, the morphology–property relationships and the underpinning charge transport mechanisms remain unclear. Particularly, whether the nonlinear charge transport in conducting polymers is appropriately formulated within non-Fermi liquids is not clear. In this work, via varying crystalline degrees of samples, we carry out systematic investigations on the charge transport nonlinearity in conducting polymers. Possible charge carriers’ dimensionality is discussed when varying the molecular chain’s crystalline orders. A heterogeneous-resistive-network (HRN) model is proposed based on the tied-link between Fermi liquids (FL) and Luttinger liquids (LL), related to the high-ordered crystalline zones and weak-coupled amorphous regions, respectively. The HRN model is supported by precise electrical and microstructural characterizations, together with theoretic evaluations, which well describes the nonlinear transport behaviors and provides new insights into the microstructure-correlated charge transport in organic solids.
AB - Organic conjugated polymers demonstrate great potential in transistors, solar cells and light-emitting diodes, whose performances are fundamentally governed by charge transport. However, the morphology–property relationships and the underpinning charge transport mechanisms remain unclear. Particularly, whether the nonlinear charge transport in conducting polymers is appropriately formulated within non-Fermi liquids is not clear. In this work, via varying crystalline degrees of samples, we carry out systematic investigations on the charge transport nonlinearity in conducting polymers. Possible charge carriers’ dimensionality is discussed when varying the molecular chain’s crystalline orders. A heterogeneous-resistive-network (HRN) model is proposed based on the tied-link between Fermi liquids (FL) and Luttinger liquids (LL), related to the high-ordered crystalline zones and weak-coupled amorphous regions, respectively. The HRN model is supported by precise electrical and microstructural characterizations, together with theoretic evaluations, which well describes the nonlinear transport behaviors and provides new insights into the microstructure-correlated charge transport in organic solids.
UR - http://www.scopus.com/inward/record.url?scp=85098618349&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-20238-5
DO - 10.1038/s41467-020-20238-5
M3 - Article
C2 - 33397910
AN - SCOPUS:85098618349
SN - 2041-1723
VL - 12
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 58
ER -