A robust descriptor based on Weber's Law

Jie Chen*, Shiguang Shan, Guoying Zhao, Xilin Chen, Wen Gao, Matti Pietikäinen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

51 Citations (Scopus)

Abstract

Inspired by Weber's Law, this paper proposes a simple, yet very powerful and robust local descriptor, Weber Local Descriptor (WLD). It is based on the fact that human perception of a pattern depends on not only the change of a stimulus (such as sound, lighting, et al.) but also the original intensity of the stimulus. Specifically, WLD consists of two components: its differential excitation and orientation. A differential excitation is a function of the ratio between two terms: One is the relative intensity differences of its neighbors against a current pixel; the other is the intensity of the current pixel. An orientation is the gradient orientation of the current pixel. For a given image, we use the differential excitation and the orientation components to construct a concatenated WLD histogram feature. Experimental results on Brodatz textures show that WLD impressively outperforms the other classical descriptors (e.g., Gabor). Especially, experimental results on face detection show a promising performance. Although we train only one classifier based on WLD features, the classifier obtains a comparable performance to state-of-the-art methods on MIT+CMU frontal face test set, AR face dataset and CMU profile test set.

Original languageEnglish
Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
DOIs
Publication statusPublished - 2008
Externally publishedYes
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
Duration: 23 Jun 200828 Jun 2008

Publication series

Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Conference

Conference26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Country/TerritoryUnited States
CityAnchorage, AK
Period23/06/0828/06/08

Fingerprint

Dive into the research topics of 'A robust descriptor based on Weber's Law'. Together they form a unique fingerprint.

Cite this