A revolutionary design concept: full-sealed lithium-oxygen batteries

Xiangyu Wen, Xingbao Zhu*, Xing Tang, Yuanguo Wu, Yu Wang, Zining Man, Weiting Qi, Jiaqi Wang, Zhe Lv

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

At this moment, non-aqueous rechargeable lithium-oxygen batteries (LOBs) with extremely high energy density are regarded as the most viable energy storage devices to potentially replace petroleum. One of the most crucial impediments to their implementation has been ensuring facile oxygen availability. Moreover, as semi-sealed systems, LOBs have confronted challenges including oxygen impurities, product degradation, anode corrosion, frequent side reactions, and mediocre cycling performance. In this work, utilizing the physical adsorption of porous (micro-, meso- and macro-porous) solid carbon materials, we incorporate an oxygen storage layer (OSL) with reversible oxygen ad/desorption capabilities into a LOB to develop novel fully-sealed lithium-oxygen batteries (F-S-LOBs). The results demonstrate mesoporous carbons exhibit optimal oxygen adsorption/desorption kinetics, rendering them highly suitable for F-S-LOBs without developing complex oxygen-permeable membranes or carrying oxygen tanks. The OSL fabricated with mesoporous carbon can sustain battery charge/discharge at various current densities with exceptional cycling performance. Additionally, we provide approximate pore size guidelines for oxygen storage materials to aid future research. This study is anticipated to offer a new robust research direction for metal-air batteries and to forge a new path toward promoting the commercialization and development of this technology.

Original languageEnglish
Article number109405
JournalNano Energy
Volume123
DOIs
Publication statusPublished - May 2024

Keywords

  • Adsorption and desorption mechanism
  • Full-sealed lithium-oxygen battery
  • Mesoporous carbon
  • Oxygen storage layer
  • Oxygen/air batteries

Fingerprint

Dive into the research topics of 'A revolutionary design concept: full-sealed lithium-oxygen batteries'. Together they form a unique fingerprint.

Cite this