A parametric study of the effects of inlet distortion on fan aerodynamic stability

Wenqiang Zhang*, Mehdi Vahdati

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

The performance and aerodynamic stability of fan blades operating in a circumferentially non-uniform inlet flow is a key concern in the design of turbofan engines. With the recent trends in the design of civil engines with shorter inlet ducts (such as low-speed fans), or boundary layer ingesting engines, quick and reliable modelling of rotor/distortion interactions is becoming very important. The aim of this paper is to study the effects of inlet distortions on the aerodynamic stability of a fan blade and to identify the parameters that have a major impact on the stability of the blade. NASA rotor 67, for which a significant amount of measured data is available, was used for this study. In the first part of this study, the behavior of the fan with inlet distortion at near stall condition is analyzed, and it is shown how rotating stall is triggered. In the second part of this study, unsteady simulations with inlet distortion were performed to study how parameters, such as exit duct length and distortion strength, influence the stall margin of the blade.

Original languageEnglish
Title of host publicationTurbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791850992
DOIs
Publication statusPublished - 2018
Externally publishedYes
EventASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018 - Oslo, Norway
Duration: 11 Jun 201815 Jun 2018

Publication series

NameProceedings of the ASME Turbo Expo
Volume2A-2018

Conference

ConferenceASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018
Country/TerritoryNorway
CityOslo
Period11/06/1815/06/18

Fingerprint

Dive into the research topics of 'A parametric study of the effects of inlet distortion on fan aerodynamic stability'. Together they form a unique fingerprint.

Cite this