A multi-objective evolutionary algorithm with new reproduction and decomposition mechanisms for the multi-point dynamic aggregation problem

Guanqiang Gao, Bin Xin, Yi Mei, Shengyu Lu, Shuxin Ding

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

An emerging optimisation problem from real-world applications, named the multi-point dynamic aggregation (MPDA) problem, has become an active research of the multi-robot system. This paper focuses on a multi-objective MPDA (MO-MPDA) problem which is to design execution plans of robots for minimising the cost of used robots and maximising the efficiency of task execution. The MOMPDA problem has the issues of conflicting objectives, redundant representation, and variable-length encoding, posing extra challenges to address the MO-MPDA problem effectively. Combining the ?-constraint method and decomposition mechanisms, a novel multi-objective evolutionary algorithm is proposed. The proposed algorithm selects the efficiency objective as the main objective and converts the cost objective as constraints. Thus, the multi-objective problem is decomposed into a series of scalar constrained optimisation subproblems by assigning each subproblem with an upper bound constraint. All the subproblems are optimised and evolved simultaneously with the transferring knowledge from other sub-problems to solve the MO-MPDA problem parallelly and efficiently. Besides, considering the characteristics of parent individuals, this paper designs a hybrid reproduction mechanism to transmit effective information to offspring individuals for tackling the encoding redundancy and varying-length. Experimental results show that the proposed algorithm significantly outperforms the state-of-the-art algorithms in terms of most-used metrics.

Original languageEnglish
Title of host publicationGECCO 2022 - Proceedings of the 2022 Genetic and Evolutionary Computation Conference
PublisherAssociation for Computing Machinery, Inc
Pages1182-1190
Number of pages9
ISBN (Electronic)9781450392372
DOIs
Publication statusPublished - 8 Jul 2022
Event2022 Genetic and Evolutionary Computation Conference, GECCO 2022 - Virtual, Online, United States
Duration: 9 Jul 202213 Jul 2022

Publication series

NameGECCO 2022 - Proceedings of the 2022 Genetic and Evolutionary Computation Conference

Conference

Conference2022 Genetic and Evolutionary Computation Conference, GECCO 2022
Country/TerritoryUnited States
CityVirtual, Online
Period9/07/2213/07/22

Keywords

  • Multi-objective evolutionary algorithm
  • hybrid reprodcution mechanism
  • multi-point dynamic aggregation
  • multi-robot system

Fingerprint

Dive into the research topics of 'A multi-objective evolutionary algorithm with new reproduction and decomposition mechanisms for the multi-point dynamic aggregation problem'. Together they form a unique fingerprint.

Cite this