A Multi-Level Supervised Network for Pansharpening to Reduce Color Distortion

Jian Guo, Ziyang Kong, Qizhi Xu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Due to the inherent limitations of satellites, obtaining high-resolution multispectral (MS) images directly poses a challenge. Consequently, several pansharpening methods have been proposed to fuse panchromatic (Pan) images with MS images in order to generate high-resolution MS images. However, the resulting fused images often suffer from color distortion. To address this issue, we developed a multi-level supervised network aimed at minimizing color distortion. Our approach disassembled the pansharpening method into two models: an image generation module and a color optimization module. The image generation module was responsible for producing an initial fused image with rich texture, while the color optimization module focused on correcting the grey distribution of each band to achieve a high-fidelity fused image. Through experiments conducted on GaoFen-2, we have demonstrated significant improvements in reducing color distortion using our proposed method.

Original languageEnglish
Title of host publicationIGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6811-6814
Number of pages4
ISBN (Electronic)9798350320107
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, United States
Duration: 16 Jul 202321 Jul 2023

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2023-July

Conference

Conference2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
Country/TerritoryUnited States
CityPasadena
Period16/07/2321/07/23

Keywords

  • color distortion
  • image fusion
  • multi-level supervised network
  • remote sensing

Fingerprint

Dive into the research topics of 'A Multi-Level Supervised Network for Pansharpening to Reduce Color Distortion'. Together they form a unique fingerprint.

Cite this