TY - GEN
T1 - A model approach to estimate Peer-to-Peer traffic matrices
AU - Xu, Ke
AU - Shen, Meng
AU - Ye, Mingjiang
PY - 2011
Y1 - 2011
N2 - Peer-to-Peer (P2P) applications have become increasingly popular in recent few years, which bring new challenges to network management and traffic engineering (TE). As basic input information, P2P traffic matrices are of significant importance for TE. Due to excessively high cost of direct measurement, a lot of studies aim at modeling and estimating general traffic matrices, but few focus on P2P traffic matrices. In this paper, we proposed a model to estimate P2P traffic matrices in networks. Important factors are considered, including the number of peers, the localization ratio of P2P traffic, and the distances among different networks. Here distance can be hop counts or geographic distance accordingly. To validate our model, we have evaluated the performance using both real P2P live steaming traces and file sharing application traces. Evaluation results show that the proposed model outperforms the other two typical models for general traffic matrices estimation, in terms of estimate errors. To the best of our knowledge, this is the first research on P2P traffic matrices estimation. P2P traffic matrices, derived from the model, can be applied to P2P traffic optimization and other TE fields.
AB - Peer-to-Peer (P2P) applications have become increasingly popular in recent few years, which bring new challenges to network management and traffic engineering (TE). As basic input information, P2P traffic matrices are of significant importance for TE. Due to excessively high cost of direct measurement, a lot of studies aim at modeling and estimating general traffic matrices, but few focus on P2P traffic matrices. In this paper, we proposed a model to estimate P2P traffic matrices in networks. Important factors are considered, including the number of peers, the localization ratio of P2P traffic, and the distances among different networks. Here distance can be hop counts or geographic distance accordingly. To validate our model, we have evaluated the performance using both real P2P live steaming traces and file sharing application traces. Evaluation results show that the proposed model outperforms the other two typical models for general traffic matrices estimation, in terms of estimate errors. To the best of our knowledge, this is the first research on P2P traffic matrices estimation. P2P traffic matrices, derived from the model, can be applied to P2P traffic optimization and other TE fields.
KW - Peer-to-Peer (P2P)
KW - Traffic engineering
KW - Traffic matrix
UR - http://www.scopus.com/inward/record.url?scp=79960877298&partnerID=8YFLogxK
U2 - 10.1109/INFCOM.2011.5935248
DO - 10.1109/INFCOM.2011.5935248
M3 - Conference contribution
AN - SCOPUS:79960877298
SN - 9781424499212
T3 - Proceedings - IEEE INFOCOM
SP - 676
EP - 684
BT - 2011 Proceedings IEEE INFOCOM
T2 - IEEE INFOCOM 2011
Y2 - 10 April 2011 through 15 April 2011
ER -