Abstract
The novel cubic cage Ag@AgBr plasmonic photocatalysts were first synthesized via a water soluble sacrificial salt-crystal-template (SCT) process. This is achieved by the photo-reduction process was used to produce Ag nanoparticles on the surface of AgBr. The physical and photophysical properties of the as-prepared Ag@AgBr cubic cages were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), ultraviolet-visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The results showed that Ag@AgBr cubic cages have excellent photocatalytic performance under visible light illumination, since the methyl orange (MO) dyes were completely degraded within 80. s over Ag@AgBr photocatalysts and the photocatalytic activity maintains a high level after 7 cycles. A possible catalytic mechanism for Ag@AgBr cubic cages is proposed which is attributed to the surface plasmon resonance (SPR) effect from Ag and hybrid effect from AgBr.
Original language | English |
---|---|
Pages (from-to) | 564-572 |
Number of pages | 9 |
Journal | Applied Catalysis B: Environmental |
Volume | 163 |
DOIs | |
Publication status | Published - 1 Feb 2015 |
Externally published | Yes |
Keywords
- Ag@AgBr
- Cubic cage
- Photocatalysis
- Surface plasmon resonance