A criterion and design for space-time block codes achieving full diversity with linear receivers

Yue Shang*, Xiang Gen Xia

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

In most of the existing space-time code designs, achieving full diversity is based on maximum-likelihood (ML) decoding at the receiver that is usually computationally expensive and may not have soft outputs. Recently, Zhang-Liu-Wong introduced Toeplitz codes and showed that Toeplitz codes achieve full diversity when a linear receiver, zero-forcing (ZF) or minimum mean square error (MMSE) receiver, is used. Motivated from Zhang-Liu-Wong's results on Toeplitz codes, in this paper, we propose a design criterion for space-time block codes (STBC), in which information symbols and their complex conjugates are linearly embedded, to achieve full diversity when ZF or MMSE receiver is used. Subsequently, we propose a novel family of STBC that satisfy the criterion and thus achieve full diversity with ZF or MMSE receiver. Our newly proposed STBC are constructed by overlapping the 2 × 2 Alamouti code and hence named overlapped Alamouti codes in this paper. The new codes are close to orthogonal while their symbol rates can approach 1 for any number of transmit antennas. Simulation results show that overlapped Alamouti codes significantly outperform Toeplitz codes for all numbers of transmit antennas and also outperform orthogonal STBC (OSTBC) when the number of transmit antennas is above 4.

Original languageEnglish
Title of host publicationProceedings - 2007 IEEE International Symposium on Information Theory, ISIT 2007
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2906-2910
Number of pages5
ISBN (Print)1424414296, 9781424414291
DOIs
Publication statusPublished - 2007
Externally publishedYes
Event2007 IEEE International Symposium on Information Theory, ISIT 2007 - Nice, France
Duration: 24 Jun 200729 Jun 2007

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8101

Conference

Conference2007 IEEE International Symposium on Information Theory, ISIT 2007
Country/TerritoryFrance
CityNice
Period24/06/0729/06/07

Fingerprint

Dive into the research topics of 'A criterion and design for space-time block codes achieving full diversity with linear receivers'. Together they form a unique fingerprint.

Cite this