TY - GEN
T1 - A control system of a ping-pong robot arm based on fuzzy method
AU - Yu, Xiaowen
AU - Xu, Jing
AU - Liu, Shaoli
AU - Chen, Ken
PY - 2011
Y1 - 2011
N2 - This paper presents a 6-revolutional degree of freedoms (DOFs) low-cost arm of a ping-pong robot driven by 6 actuators. Design, control, simulation and performance of this arm are examined in this paper. The task in this study is to make the ping-pong ball stay in the racket at a balanced location. The arm comprises three main components, a three DOFs arm, a spherical wrist, and a ping-pong racket. A key design goal of the control is the timeliness: controller has to meet the requirements of the real-time operation speed. Therefore, to enhance the speed of calculation and reduce the cost, the arm manipulating control has been implemented based on fuzzy algorithm and is accomplished using an ATmega128 MCU, which is able to calculate the angular position of joints real-time. Infrared touch screen is installed as a sensor to automatically obtain the position of the ball, according to which controller adjusts the orientation of the wrist in order to keep the ball in racket. Experimental results illustrate the efficacy in the arm and racket system.
AB - This paper presents a 6-revolutional degree of freedoms (DOFs) low-cost arm of a ping-pong robot driven by 6 actuators. Design, control, simulation and performance of this arm are examined in this paper. The task in this study is to make the ping-pong ball stay in the racket at a balanced location. The arm comprises three main components, a three DOFs arm, a spherical wrist, and a ping-pong racket. A key design goal of the control is the timeliness: controller has to meet the requirements of the real-time operation speed. Therefore, to enhance the speed of calculation and reduce the cost, the arm manipulating control has been implemented based on fuzzy algorithm and is accomplished using an ATmega128 MCU, which is able to calculate the angular position of joints real-time. Infrared touch screen is installed as a sensor to automatically obtain the position of the ball, according to which controller adjusts the orientation of the wrist in order to keep the ball in racket. Experimental results illustrate the efficacy in the arm and racket system.
UR - http://www.scopus.com/inward/record.url?scp=81055125464&partnerID=8YFLogxK
U2 - 10.1109/ICMA.2011.5985691
DO - 10.1109/ICMA.2011.5985691
M3 - Conference contribution
AN - SCOPUS:81055125464
SN - 9781424481149
T3 - 2011 IEEE International Conference on Mechatronics and Automation, ICMA 2011
SP - 398
EP - 403
BT - 2011 IEEE International Conference on Mechatronics and Automation, ICMA 2011
T2 - 2011 IEEE International Conference on Mechatronics and Automation, ICMA 2011
Y2 - 7 August 2011 through 10 August 2011
ER -