Abstract
Applying the exterior building wall incorporating the phase change materials (PCMs) could decrease the thermal load. However, the conventional way of integrating the PCMs usually experiences inadequate stored solar energy and significant heat loss during winter. Therefore, a novel unventilated double-skin wall incorporating the PCM layer (DSWP) was proposed, and its climate adaptability was investigated by the validated computational fluid dynamics (CFD) model. The results showed that the eight investigated climate zones could be categorized into three groups. The time lags of the highest and lowest indoor temperatures for the building unit with the DSWP in all studied climate zones could achieve values of 3.5–5.2 h and 5.7–6.3 h, respectively. The daily thermal load intensity and thermal comfort could achieve values of 1025.3-4.8 kJ/m2 and 6.0–21.0 h, respectively. The indoor temperature fluctuation range could reach values of 2.6–9.5 °C. Moreover, the cost savings in studied climate zones, except for the subarctic zone, are 7.76–41.33 % compared to the central heating. The results could present theoretical principles for the real-world application of the proposed wall in different climate zones.
Original language | English |
---|---|
Article number | 122105 |
Journal | Renewable Energy |
Volume | 239 |
DOIs | |
Publication status | Published - 1 Feb 2025 |
Keywords
- Climate adaptability
- Double-skin wall
- Heating
- Phase change materials
- Thermal performance