A carrier loop error compensation method for GNSS/SINS deep integration under high dynamics

Jia Xing Sun*, Xuan Xiao, Han Ling Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

When vehicles work in high dynamic motion, SINS will carry more errors into the GNSS receiver carrier switching for system based on the deep combination of GNSS/SINS. It causes the receiver to lose the loop lock and work in an abnormal state. This paper analyzes the error source of the receiver and deduces the error transmission model of SINS speed auxiliary carrier ring under high dynamic conditions. Then, a method of SINS speed and acceleration aided compensation for carrier loop error is proposed to improve the maximum acceleration range that the carrier loop can bear. The simulation experiment analysis proves that this method is effective, and the maximum acceleration of the carrier can be increased by 4.5g-9g in satellite tracking in different line-of-sight directions.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Mechatronics and Automation, ICMA 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages893-898
Number of pages6
ISBN (Electronic)9781665408523
DOIs
Publication statusPublished - 2022
Event19th IEEE International Conference on Mechatronics and Automation, ICMA 2022 - Guilin, Guangxi, China
Duration: 7 Aug 202210 Aug 2022

Publication series

Name2022 IEEE International Conference on Mechatronics and Automation, ICMA 2022

Conference

Conference19th IEEE International Conference on Mechatronics and Automation, ICMA 2022
Country/TerritoryChina
CityGuilin, Guangxi
Period7/08/2210/08/22

Keywords

  • GNSS
  • SINS
  • deeply coupled integration

Fingerprint

Dive into the research topics of 'A carrier loop error compensation method for GNSS/SINS deep integration under high dynamics'. Together they form a unique fingerprint.

Cite this