100 Drivers, 2200 km: A Natural Dataset of Driving Style toward Human-centered Intelligent Driving Systems

Chaopeng Zhang, Wenshuo Wang*, Zhaokun Chen, Junqiang Xi*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Effective driving style analysis is critical to developing human-centered intelligent driving systems that consider drivers' preferences. However, the approaches and conclusions of most related studies are diverse and inconsistent because no unified datasets tagged with driving styles exist as a reliable benchmark. The absence of explicit driving style labels makes verifying different approaches and algorithms difficult. This paper provides a new benchmark by constructing a natural dataset of Driving Style (100-DrivingStyle) tagged with the subjective evaluation of 100 drivers' driving styles. In this dataset, the subjective quantification of each driver's driving style is from themselves and an expert according to the Likert-scale questionnaire. The testing routes are selected to cover various driving scenarios, including highways, urban, highway ramps, and signalized traffic. The collected driving data consists of lateral and longitudinal manipulation information, including steering angle, steering speed, lateral acceleration, throttle position, throttle rate, brake pressure, etc. This dataset is the first to provide detailed manipulation data with driving-style tags, and we demonstrate its benchmark function using six classifiers. The 100-DrivingStyle dataset is available via https://github.com/chaopengzhang/100-DrivingStyle-Dataset

Original languageEnglish
Title of host publication35th IEEE Intelligent Vehicles Symposium, IV 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages351-356
Number of pages6
ISBN (Electronic)9798350348811
DOIs
Publication statusPublished - 2024
Event35th IEEE Intelligent Vehicles Symposium, IV 2024 - Jeju Island, Korea, Republic of
Duration: 2 Jun 20245 Jun 2024

Publication series

NameIEEE Intelligent Vehicles Symposium, Proceedings
ISSN (Print)1931-0587
ISSN (Electronic)2642-7214

Conference

Conference35th IEEE Intelligent Vehicles Symposium, IV 2024
Country/TerritoryKorea, Republic of
CityJeju Island
Period2/06/245/06/24

Fingerprint

Dive into the research topics of '100 Drivers, 2200 km: A Natural Dataset of Driving Style toward Human-centered Intelligent Driving Systems'. Together they form a unique fingerprint.

Cite this