Two-step spatialoral compressive sensing imaging

Dingaoyu Zhao, Jun Ke*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Compressed sensing(CS) technology can efficiently restore information from far fewer measurements than what Nyquist sampling theory requires. Currently, most CS reconstruction algorithms only reconstruct objects from spacial or temporal compressive measurements. Given the complexity and the difficulty, even using neural networks, it is difficult to reconstruct an object form spatialoral compressive measurements. In this paper, we represents the imaging process in spatialoral compressive imaging (STCI) into a cascaded process of spatial compressive imaging(SCI) followed by temporal compressive imaging(TCI). Thus to reconstruct an object from STCI, we first reconstruct multiple object frames from a single STCI measurement frame, and then improve object frames' resolution. The TCI reconstruction algorithm used in this paper is TwIST algorithm. To improve object frame spatial resolution, we use a deep learning network SRResNet+. Besides improving resolution, SRResNet+ can also suppress residual error in TCI reconstruction frames. We verify our idea using numerical experiments. When the compressive ratio for STCI is 16:1, or the compressive ratios for SCI and TCI both are 4:1, the reconstructions obtained using TwIST followed by SRResNet+ present a PSNR value 29dB.

源语言英语
主期刊名Advanced Optical Imaging Technologies IV
编辑Xiao-Cong Yuan, P. Scott Carney, Kebin Shi
出版商SPIE
ISBN(电子版)9781510646414
DOI
出版状态已出版 - 2021
活动Advanced Optical Imaging Technologies IV 2021 - Nantong, 中国
期限: 10 10月 202111 10月 2021

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
11896
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议Advanced Optical Imaging Technologies IV 2021
国家/地区中国
Nantong
时期10/10/2111/10/21

指纹

探究 'Two-step spatialoral compressive sensing imaging' 的科研主题。它们共同构成独一无二的指纹。

引用此