The role of Cu impurity on the structure and electrochemical performance of Ni-rich cathode material for lithium-ion batteries

Tong Wu, Guange Wang, Borui Liu, Qing Huang*, Yuefeng Su, Feng Wu, Ryan M. Kelly

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

33 引用 (Scopus)

摘要

It is a challenge to completely eliminate copper (Cu) from an anode collector by an acid-leachate and results in Cu impurities in the regenerated Ni-rich materials. To investigate the effect of Cu impurities on Ni-rich cathode material, the present study successfully synthesized Li (Ni0.8Co0.1Mn0.1)1-xCuxO2 (x = 0, 0.005, 0.01 and 0.02) cathode material via co-precipitation. The results determine that the dopant of Cu promote to form surface like coral thicket and stomas. Moreover, while Cu replaces Mn and Ni in the cathode material with different Cu concentrations, a resulting increase in Ni3+ content is apparent and in turn, when the x = 0.01, the cathode material performs the lowest amount of cation mixing and provides the best electrochemical properties. The capacity retention of LiNi0.8Co0.1Mn0.09Cu0.01O2 after 100 cycles is >90% at 1C, resulting from a higher Li+ diffusion coefficient and lower charge-transfer resistance due to the generation of porous structure for Cu impurity. And the incorporation of Cu could effectively inhibit discharge capacity decrease and alleviate the voltage reduction. These findings provide an opportunity to exhibit copper as a beneficial dopant in the recycling and regeneration processes of spent lithium-ion batteries.

源语言英语
文章编号229774
期刊Journal of Power Sources
494
DOI
出版状态已出版 - 15 5月 2021

指纹

探究 'The role of Cu impurity on the structure and electrochemical performance of Ni-rich cathode material for lithium-ion batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此