Sequential Point Cloud Prediction in Interactive Scenarios: A Survey

Haowen Wang, Zirui Li, Jianwei Gong*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Point cloud has been widely used in the field of autonomous driving since it can provide a more comprehensive three-dimensional representation of the environment than 2D images. Point-wise prediction based on point cloud sequence (PCS) is an essential part of environment understanding, which can assist in the decision-making and motion-planning of autonomous vehicles. However, PCS prediction has not been deeply researched in the literature. This paper proposes a brief review of the sequential point cloud prediction methods, focusing on interactive scenarios. Firstly, we define the PCS prediction problem and introduce commonly-used frameworks. Secondly, by reviewing non-predictive problems, we analyze and summarize the spatio-temporal feature extraction methods based on PCS. On this basis, we review two types of PCS prediction tasks, scene flow estimation (SFE) and point cloud location prediction (PCLP), highlighting their connections and differences. Finally, we discuss some opening issues and point out some potential research directions.

源语言英语
主期刊名Proceeding - 2021 China Automation Congress, CAC 2021
出版商Institute of Electrical and Electronics Engineers Inc.
3862-3867
页数6
ISBN(电子版)9781665426473
DOI
出版状态已出版 - 2021
活动2021 China Automation Congress, CAC 2021 - Beijing, 中国
期限: 22 10月 202124 10月 2021

出版系列

姓名Proceeding - 2021 China Automation Congress, CAC 2021

会议

会议2021 China Automation Congress, CAC 2021
国家/地区中国
Beijing
时期22/10/2124/10/21

指纹

探究 'Sequential Point Cloud Prediction in Interactive Scenarios: A Survey' 的科研主题。它们共同构成独一无二的指纹。

引用此