Rapid SERS identification of methicillin-susceptible and methicillin-resistant: Staphylococcus aureus via aptamer recognition and deep learning

Shu Wang, Hao Dong, Wanzhu Shen, Yong Yang, Zhigang Li, Yong Liu, Chongwen Wang*, Bing Gu*, Long Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

25 引用 (Scopus)

摘要

Here, we report a label-free surface-enhanced Raman scattering (SERS) method for the rapid and accurate identification of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) based on aptamer-guided AgNP enhancement and convolutional neural network (CNN) classification. Sixty clinical isolates of Staphylococcus aureus (S. aureus), comprising 30 strains of MSSA and 30 strains of MRSA were used to build the CNN classification model. The developed method exhibited 100% identification accuracy for MSSA and MRSA, and is thus a promising tool for the rapid detection of drug-sensitive and drug-resistant bacterial strains.

源语言英语
页(从-至)34425-34431
页数7
期刊RSC Advances
11
55
DOI
出版状态已出版 - 25 10月 2021
已对外发布

指纹

探究 'Rapid SERS identification of methicillin-susceptible and methicillin-resistant: Staphylococcus aureus via aptamer recognition and deep learning' 的科研主题。它们共同构成独一无二的指纹。

引用此