摘要
We prove a new upper bound for the minimum d-degree threshold for perfect matchings in k-uniform hypergraphs when d < k/2. As a consequence, this determines exact values of the threshold when 0.42k ≥ d < k/2 or when (k, d) = (12, 5) or (17, 7). Our approach is to give an upper bound on the Erdös matching conjecture and convert the result to the minimum d-degree setting using an approach of Kühn, Osthus, and Townsend. To obtain exact thresholds, we also apply a result of Treglown and Zhao.
源语言 | 英语 |
---|---|
页(从-至) | 1351-1357 |
页数 | 7 |
期刊 | SIAM Journal on Discrete Mathematics |
卷 | 30 |
期 | 3 |
DOI | |
出版状态 | 已出版 - 2016 |
已对外发布 | 是 |