Output-only recursive identification of time-varying structures using a Gaussian process regression TARMA approach

Z. S. Ma, L. Liu, S. D. Zhou, F. Naets, W. Heylen, W. Desmet

科研成果: 书/报告/会议事项章节会议稿件同行评审

7 引用 (Scopus)

摘要

This paper focuses on the problem of output-only recursive identification of time-varying structures. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. A Gaussian process regression TARMA identification scheme is subsequently proposed, allowing the Gaussian process regression to operate for vector TARMA models in a recursive manner. The proposed method is employed to identify a laboratory time-varying structure consisting of a simply supported beam and a sliding mass, and is assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments. The comparison demonstrates the superior achievable accuracy of the proposed Gaussian process regression TARMA approach.

源语言英语
主期刊名Proceedings of ISMA 2016 - International Conference on Noise and Vibration Engineering and USD2016 - International Conference on Uncertainty in Structural Dynamics
编辑Paul Sas, David Moens, Axel van de Walle
出版商KU Leuven, Departement Werktuigkunde
2859-2870
页数12
ISBN(电子版)9789073802940
出版状态已出版 - 2016
活动27th International Conference on Noise and Vibration Engineering, ISMA 2016 and International Conference on Uncertainty in Structural Dynamics, USD2016 - Leuven, 比利时
期限: 19 9月 201621 9月 2016

出版系列

姓名Proceedings of ISMA 2016 - International Conference on Noise and Vibration Engineering and USD2016 - International Conference on Uncertainty in Structural Dynamics

会议

会议27th International Conference on Noise and Vibration Engineering, ISMA 2016 and International Conference on Uncertainty in Structural Dynamics, USD2016
国家/地区比利时
Leuven
时期19/09/1621/09/16

指纹

探究 'Output-only recursive identification of time-varying structures using a Gaussian process regression TARMA approach' 的科研主题。它们共同构成独一无二的指纹。

引用此