Minimum degree thresholds for Hamilton (k/2)-cycles in k-uniform hypergraphs

Hiệp Hàn, Jie Han, Yi Zhao

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

For any even integer k≥6, integer d such that k/2≤d≤k−1, and sufficiently large n∈(k/2)N, we find a tight minimum d-degree condition that guarantees the existence of a Hamilton (k/2)-cycle in every k-uniform hypergraph on n vertices. When n∈kN, the degree condition coincides with the one for the existence of perfect matchings provided by Rödl, Ruciński and Szemerédi (for d=k−1) and Treglown and Zhao (for d≥k/2), and thus our result strengthens theirs in this case.

源语言英语
页(从-至)105-148
页数44
期刊Journal of Combinatorial Theory. Series B
153
DOI
出版状态已出版 - 3月 2022

指纹

探究 'Minimum degree thresholds for Hamilton (k/2)-cycles in k-uniform hypergraphs' 的科研主题。它们共同构成独一无二的指纹。

引用此