摘要
Let n∈Z≥4 and Hq(Dn) be the semisimple Hecke algebra of type Dn with Hecke parameter q∈K×. For each simple Hq(Dn)-module V, we use the Hecke generators of Hq(Dn) to construct explicitly a quasi-idempotent zV (i.e., zV2=cVzV for some cV∈K×) which is defined over a natural integral form of Hq(Dn), such that eV:=cV−1zV is a primitive idempotent and eVHq(Dn)≅V as right Hq(Dn)-module. We use the seminormal bases of the Hecke algebra Hq(Bn) of type Bn to construct a complete set of pairwise orthogonal primitive idempotents of Hq(Dn), to obtain an explicit seminormal basis of Hq(Dn) as well as a new seminormal construction for each simple module over Hq(Dn). As byproducts, we discover some rational property of certain square-roots of quotients of γ-coefficients for Hq(Bn), which play a key role in the proof of the main results of the paper.
源语言 | 英语 |
---|---|
文章编号 | 106867 |
期刊 | Journal of Pure and Applied Algebra |
卷 | 226 |
期 | 4 |
DOI | |
出版状态 | 已出版 - 4月 2022 |