Low-complexity soft-output signal detection based on improved kaczmarz iteration algorithm for uplink massive MIMO system

Hebiao Wu, Bin Shen, Shufeng Zhao, Peng Gong*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

For multi-user uplink massive multiple input multiple output (MIMO) systems, minimum mean square error (MMSE) criterion-based linear signal detection algorithm achieves nearly optimal performance, on condition that the number of antennas at the base station is asymptotically large. However, it involves prohibitively high complexity in matrix inversion when the number of users is getting large. A low-complexity soft-output signal detection algorithm based on improved Kaczmarz method is proposed in this paper, which circumvents the matrix inversion operation and thus reduces the complexity by an order of magnitude. Meanwhile, an optimal relaxation parameter is introduced to further accelerate the convergence speed of the proposed algorithm and two approximate methods of calculating the log-likelihood ratios (LLRs) for channel decoding are obtained as well. Analysis and simulations verify that the proposed algorithm outperforms various typical low-complexity signal detection algorithms. The proposed algorithm converges rapidly and achieves its performance quite close to that of the MMSE algorithm with only a small number of iterations.

源语言英语
文章编号1564
期刊Sensors
20
6
DOI
出版状态已出版 - 2 3月 2020

指纹

探究 'Low-complexity soft-output signal detection based on improved kaczmarz iteration algorithm for uplink massive MIMO system' 的科研主题。它们共同构成独一无二的指纹。

引用此