摘要
Complex environments and variable working conditions lead to irreversible attenuation of battery pack capacity in electric vehicles (EVs). Online capacity estimation is of great significance for battery pack management and maintenance. This work proposes a state-of-health (SOH) attenuation model considering driving mileage and seasonal temperature for battery health estimation. Firstly, a variable forgetting factor recursive least square (VFFRLS) algorithm is proposed for battery model parameter identification. It adaptively adjusts the forgetting factor according to current fluctuations. Then, an extended Kalman-particle filter (EPF) algorithm is proposed for online capacity estimation. In addition, a battery pack SOH attenuation model is constructed considering seasonal temperature and driving mileage. Finally, the performance of the proposed model and algorithm is verified with nine months of actual vehicle data. The experimental results show that the proposed parameter identification and capacity estimation algorithm can accurately estimate the model parameters and capacity. The average capacity of the battery module decreases with the total mileage. The compensation of monthly driving mileage and ambient temperature factors effectively improves the accuracy of SOH model.
源语言 | 英语 |
---|---|
文章编号 | 126855 |
期刊 | Energy |
卷 | 270 |
DOI | |
出版状态 | 已出版 - 1 5月 2023 |