TY - GEN
T1 - Learning to Segment and Represent Motion Primitives from Driving Data for Motion Planning Applications
AU - Wang, Boyang
AU - Gong, Jianwei
AU - Zhang, Ruizeng
AU - Chen, Huiyan
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/7
Y1 - 2018/12/7
N2 - Developing an intelligent vehicle which can perform human-like actions requires the ability to learn basic driving skills from a large amount of naturalistic driving data. The algorithms will become efficient if we could decompose the complex driving tasks into motion primitives which represent the elementary compositions of driving skills. Therefore, the purpose of this paper is to segment unlabeled trajectory data into a library of motion primitives. By applying a probabilistic inference based on an iterative Expectation-Maximization algorithm, our method segments the collected trajectories while learning a set of motion primitives represented by the dynamic movement primitives. The proposed method utilizes the mutual dependencies between the segmentation and representation of motion primitives and the driving-specific based initial segmentation. By utilizing this mutual dependency and the initial condition, this paper presents how we can enhance the performance of both the segmentation and the motion primitive library establishment. We also evaluate the applicability of the primitive representation method to imitation learning and motion planning algorithms. The model is trained and validated by using the driving data collected from the Beijing Institute of Technology intelligent vehicle platform. The results show that the proposed approach can find the proper segmentation and establish the motion primitive library simultaneously.
AB - Developing an intelligent vehicle which can perform human-like actions requires the ability to learn basic driving skills from a large amount of naturalistic driving data. The algorithms will become efficient if we could decompose the complex driving tasks into motion primitives which represent the elementary compositions of driving skills. Therefore, the purpose of this paper is to segment unlabeled trajectory data into a library of motion primitives. By applying a probabilistic inference based on an iterative Expectation-Maximization algorithm, our method segments the collected trajectories while learning a set of motion primitives represented by the dynamic movement primitives. The proposed method utilizes the mutual dependencies between the segmentation and representation of motion primitives and the driving-specific based initial segmentation. By utilizing this mutual dependency and the initial condition, this paper presents how we can enhance the performance of both the segmentation and the motion primitive library establishment. We also evaluate the applicability of the primitive representation method to imitation learning and motion planning algorithms. The model is trained and validated by using the driving data collected from the Beijing Institute of Technology intelligent vehicle platform. The results show that the proposed approach can find the proper segmentation and establish the motion primitive library simultaneously.
UR - http://www.scopus.com/inward/record.url?scp=85060437655&partnerID=8YFLogxK
U2 - 10.1109/ITSC.2018.8569913
DO - 10.1109/ITSC.2018.8569913
M3 - Conference contribution
AN - SCOPUS:85060437655
T3 - IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
SP - 1408
EP - 1414
BT - 2018 IEEE Intelligent Transportation Systems Conference, ITSC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 21st IEEE International Conference on Intelligent Transportation Systems, ITSC 2018
Y2 - 4 November 2018 through 7 November 2018
ER -