Learning semantic concepts for image retrieval using the max-min posterior pseudo-probabilities

Yuan Deng*, Xiabi Liu, Yunde Jia

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Semantic gap is the main problem in current content-based image retrieval. This paper proposes an approach which aims to learn semantic concepts from visual features. Each concept is modeled as a posterior pseudo-probability function, and the function parameters are trained from the positive and negative image examples of the concept using the max-min posterior pseudo-probabilities criterion. According to the posterior pseudo-probabilities of the query concept for all images, the image retrieval is realized by classifying all images into two categories: relevant to the query concept and irrelevant. The number of relevant images can be determined automatically. We show the effectiveness and the advantage of our approach through the experiments on Corel database.

源语言英语
主期刊名Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME 2007
出版商IEEE Computer Society
1970-1973
页数4
ISBN(印刷版)1424410177, 9781424410170
DOI
出版状态已出版 - 2007
活动IEEE International Conference onMultimedia and Expo, ICME 2007 - Beijing, 中国
期限: 2 7月 20075 7月 2007

出版系列

姓名Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME 2007

会议

会议IEEE International Conference onMultimedia and Expo, ICME 2007
国家/地区中国
Beijing
时期2/07/075/07/07

指纹

探究 'Learning semantic concepts for image retrieval using the max-min posterior pseudo-probabilities' 的科研主题。它们共同构成独一无二的指纹。

引用此