LDA-AQU: Adaptive Query-guided Upsampling via Local Deformable Attention

Zewen Du, Zhenjiang Hu, Guiyu Zhao, Ying Jin, Hongbin Ma*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Feature upsampling is an essential operation in constructing deep convolutional neural networks. However, existing upsamplers either lack specific feature guidance or necessitate the utilization of high-resolution feature maps, resulting in a loss of performance and flexibility. In this paper, we find that the local self-attention naturally has the feature guidance capability, and its computational paradigm aligns closely with the essence of feature upsampling (i.e. feature reassembly of neighboring points). Therefore, we introduce local self-attention into the upsampling task and demonstrate that the majority of existing upsamplers can be regarded as special cases of upsamplers based on local self-attention. Considering the potential semantic gap between upsampled points and their neighboring points, we further introduce the deformation mechanism into the upsampler based on local self-attention, thereby proposing LDA-AQU. As a novel dynamic kernel-based upsampler, LDA-AQU utilizes the feature of queries to guide the model in adaptively adjusting the position and aggregation weight of neighboring points, thereby meeting the upsampling requirements across various complex scenarios. In addition, LDA-AQU is lightweight and can be easily integrated into various model architectures. We evaluate the effectiveness of LDA-AQU across four dense prediction tasks: object detection, instance segmentation, panoptic segmentation, and semantic segmentation. LDA-AQU consistently outperforms previous state-of-the-art upsamplers, achieving performance enhancements of 1.7 AP, 1.5 AP, 2.0 PQ, and 2.5 mIoU compared to the baseline models in the aforementioned four tasks, respectively.

源语言英语
主期刊名MM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia
出版商Association for Computing Machinery, Inc
4919-4927
页数9
ISBN(电子版)9798400706868
DOI
出版状态已出版 - 28 10月 2024
活动32nd ACM International Conference on Multimedia, MM 2024 - Melbourne, 澳大利亚
期限: 28 10月 20241 11月 2024

出版系列

姓名MM 2024 - Proceedings of the 32nd ACM International Conference on Multimedia

会议

会议32nd ACM International Conference on Multimedia, MM 2024
国家/地区澳大利亚
Melbourne
时期28/10/241/11/24

指纹

探究 'LDA-AQU: Adaptive Query-guided Upsampling via Local Deformable Attention' 的科研主题。它们共同构成独一无二的指纹。

引用此