TY - JOUR
T1 - In situ formed Bi/BiOBrxI1-x heterojunction of hierarchical microspheres for efficient visible-light photocatalytic activity
AU - Zheng, Chunrui
AU - Cao, Chuanbao
AU - Ali, Zulfiqar
N1 - Publisher Copyright:
© the Owner Societies.
PY - 2015/5/28
Y1 - 2015/5/28
N2 - Bi nanoparticles deposited in situ in BiOBrxI1-x hierarchical microspheres (Bi/BiOBrxI1-x heterojunction) were synthesized by a facile one-step solvothermal method. The as-prepared samples were characterized via XRD, SEM, TEM, XPS, UV-vis absorption spectroscopy and N2 adsorption-desorption. The hierarchical microspheres were composed of numerous nanosheets aggregated together compactly to form a spherical geometry. Results indicated that Bi nanoparticles were generated on the surface of BiOBrxI1-x microspheres via the in situ reduction of Bi3+ by ethylene glycol. BiOBrxI1-x microspheres with deposited Bi nanoparticles were employed for the degradation of RhB under visible-light irradiation and the samples exhibited exceptionally enhanced photocatalytic activity. This immense enhancement in photocatalytic activity was attributed to the contribution of Bi nanoparticles to the efficient separation of electron-hole pairs and prolongation of the lifetime of charge carriers. The behavior of Bi nanoparticles as a cocatalyst for enhancing photocatalytic activity is similar to that of noble metals in photocatalysis. The as-prepared Bi/BiOBr0.266I0.734 sample exhibited highest photocatalytic activity, which exceeded those of other types of visible-light photocatalysts such as N-TiO2, Eu3+-BiOI, BiOBr, BiOBr0.2I0.8/graphene and even Ag/AgBr/BiOBr. The Bi/BiOBr0.266I0.734 sample displayed high photochemical stability under repeated visible-light irradiation, which is especially important for its practical application. The active species produced from Bi/BiOBrxI1-x under visible light were hydroxyl radicals. Bi/BiOBrxI1-x could generate more hydroxyl radicals due to the Bi nanoparticles, contributing to the enhance oxidation ability. This study demonstrated the high feasibility of utilizing low-cost Bi nanoparticles as a substitute for noble metals to enhance visible-light photocatalysis.
AB - Bi nanoparticles deposited in situ in BiOBrxI1-x hierarchical microspheres (Bi/BiOBrxI1-x heterojunction) were synthesized by a facile one-step solvothermal method. The as-prepared samples were characterized via XRD, SEM, TEM, XPS, UV-vis absorption spectroscopy and N2 adsorption-desorption. The hierarchical microspheres were composed of numerous nanosheets aggregated together compactly to form a spherical geometry. Results indicated that Bi nanoparticles were generated on the surface of BiOBrxI1-x microspheres via the in situ reduction of Bi3+ by ethylene glycol. BiOBrxI1-x microspheres with deposited Bi nanoparticles were employed for the degradation of RhB under visible-light irradiation and the samples exhibited exceptionally enhanced photocatalytic activity. This immense enhancement in photocatalytic activity was attributed to the contribution of Bi nanoparticles to the efficient separation of electron-hole pairs and prolongation of the lifetime of charge carriers. The behavior of Bi nanoparticles as a cocatalyst for enhancing photocatalytic activity is similar to that of noble metals in photocatalysis. The as-prepared Bi/BiOBr0.266I0.734 sample exhibited highest photocatalytic activity, which exceeded those of other types of visible-light photocatalysts such as N-TiO2, Eu3+-BiOI, BiOBr, BiOBr0.2I0.8/graphene and even Ag/AgBr/BiOBr. The Bi/BiOBr0.266I0.734 sample displayed high photochemical stability under repeated visible-light irradiation, which is especially important for its practical application. The active species produced from Bi/BiOBrxI1-x under visible light were hydroxyl radicals. Bi/BiOBrxI1-x could generate more hydroxyl radicals due to the Bi nanoparticles, contributing to the enhance oxidation ability. This study demonstrated the high feasibility of utilizing low-cost Bi nanoparticles as a substitute for noble metals to enhance visible-light photocatalysis.
UR - http://www.scopus.com/inward/record.url?scp=84929305657&partnerID=8YFLogxK
U2 - 10.1039/c5cp01655j
DO - 10.1039/c5cp01655j
M3 - Article
AN - SCOPUS:84929305657
SN - 1463-9076
VL - 17
SP - 13347
EP - 13354
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 20
ER -