Hamiltonicity in randomly perturbed hypergraphs

Jie Han, Yi Zhao

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

For integers k≥3 and 1≤ℓ≤k−1, we prove that for any α>0, there exist ϵ>0 and C>0 such that for sufficiently large n∈(k−ℓ)N, the union of a k-uniform hypergraph with minimum vertex degree αnk−1 and a binomial random k-uniform hypergraph G(k)(n,p) with p≥n−(k−ℓ)−ϵ for ℓ≥2 and p≥Cn−(k−1) for ℓ=1 on the same vertex set contains a Hamiltonian ℓ-cycle with high probability. Our result is best possible up to the values of ϵ and C and answers a question of Krivelevich, Kwan and Sudakov.

源语言英语
页(从-至)14-31
页数18
期刊Journal of Combinatorial Theory. Series B
144
DOI
出版状态已出版 - 9月 2020
已对外发布

指纹

探究 'Hamiltonicity in randomly perturbed hypergraphs' 的科研主题。它们共同构成独一无二的指纹。

引用此