Finite element simulation of the penetration resistance of topological interlocking ceramic/PE laminates

Haonan Chao, Zhixin Huang*, Xianben Ren, Jizhen Wang, Ying Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

In this paper, a novel design for the interlocking ceramic/PE composite laminates is proposed, and numerical simulations are performed to investigate the penetration resistance and mechanism of the structures. The FE model is first validated by the existing experimental tests, and the influences of the interlocking angle, impact velocity, contacting position and the penetration angles on the deformation features as well as the mechanics are detailly investigated. Results show that the deformation of the ceramic/PE laminates expands to the far away regions due to the interlocking effect. The Mises stress distribution regions in the cores are varied with the variation of the inclined angle of ceramic cells. The residual velocity of the bullet remains almost constant when the inclination angle is relatively small, while it significantly increased as the angle further raises. In the present work, the highest specific energy absorption is achieved at θ = 12.5° due to interlocking effect and the lower structural mass.

源语言英语
文章编号116802
期刊Composite Structures
311
DOI
出版状态已出版 - 1 5月 2023

指纹

探究 'Finite element simulation of the penetration resistance of topological interlocking ceramic/PE laminates' 的科研主题。它们共同构成独一无二的指纹。

引用此