Edge Computing Task Offloading for Environmental Perception of Autonomous Vehicles in 6G Networks

Pin Lv, Wenbiao Xu, Jiangtian Nie*, Yanli Yuan, Chao Cai, Zhe Chen, Jia Xu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

12 引用 (Scopus)

摘要

The most basic requirement for autonomous vehicles is accurate environmental perception. However, the lack of onboard computing resources makes it difficult for such a vehicle to process all environmental information. Through the edge computing technology and 6G networks, vehicles can offload computing tasks to edge servers for execution, which alleviates the problem of insufficient onboard resources. The environmental perception task offloading problem for autonomous vehicles is studied. The purpose is to improve the environmental perception quality through reasonable task offloading. After assigning dynamic priorities to tasks generated by autonomous vehicles, the multi-vehicle and multi-server task offloading process is abstracted as a Markov decision process, and an offloading decision algorithm based on deep reinforcement learning is designed to select edge nodes for task execution to obtain better long-term benefits. The earliest deadline first algorithm is improved to consider the deadline and priority of each task, allowing the edge node to complete more high-priority tasks within the specified time. Experimental results show that the proposed method can guarantee the basic environmental perception requirements of every vehicle, and performs better than existing methods in terms of the total priority of the discarded tasks in each scheduling period and the completion rate of key tasks.

源语言英语
页(从-至)1228-1245
页数18
期刊IEEE Transactions on Network Science and Engineering
10
3
DOI
出版状态已出版 - 1 5月 2023
已对外发布

指纹

探究 'Edge Computing Task Offloading for Environmental Perception of Autonomous Vehicles in 6G Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此