Distribution-Free junta testing

Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, Jinyu Xie

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

We study the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0, 1}n. Our first main result is that distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that uses Õ (k2)/ queries (independent of n). Complementing this, our second main result is a lower bound showing that any nonadaptive distribution-free k-junta testing algorithm must make Ω(2k/3) queries even to test to accuracy = 1/3. These bounds establish that while the optimal query complexity of non-adaptive k-junta testing is 2Θ(k), for adaptive testing it is poly(k), and thus show that adaptivity provides an exponential improvement in the distribution-free query complexity of testing juntas.

源语言英语
主期刊名STOC 2018 - Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
编辑Monika Henzinger, David Kempe, Ilias Diakonikolas
出版商Association for Computing Machinery
65-73
页数9
ISBN(电子版)9781450355599
DOI
出版状态已出版 - 20 6月 2018
已对外发布
活动50th Annual ACM Symposium on Theory of Computing, STOC 2018 - Los Angeles, 美国
期限: 25 6月 201829 6月 2018

出版系列

姓名Proceedings of the Annual ACM Symposium on Theory of Computing
ISSN(印刷版)0737-8017

会议

会议50th Annual ACM Symposium on Theory of Computing, STOC 2018
国家/地区美国
Los Angeles
时期25/06/1829/06/18

指纹

探究 'Distribution-Free junta testing' 的科研主题。它们共同构成独一无二的指纹。

引用此