Collaborative classification of hyperspectral and LIDAR data using unsupervised image-to-image CNN

Mengmeng Zhang, Wei Li*, Xueling Wei, Xiang Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

Currently, how to efficiently exploit useful information from multi-source remote sensing data for better Earth observation becomes an interesting but challenging problem. In this paper, we propose an collaborative classification framework for hyperspectral image (HSI) and Light Detection and Ranging (LIDAR) data via image-to-image convolutional neural network (CNN). There is an image-to-image mapping, learning a representation from input source (i.e., HSI) to output source (i.e., LIDAR). Then, the extracted features are expected to own characteristics of both HSI and LIDAR data, and the collaborative classification is implemented by integrating hidden layers of the deep CNN. Experimental results on two real remote sensing data sets demonstrate the effectiveness of the proposed framework.

源语言英语
主期刊名2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781538684795
DOI
出版状态已出版 - 8 10月 2018
已对外发布
活动10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018 - Beijing, 中国
期限: 19 8月 201820 8月 2018

出版系列

姓名2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018

会议

会议10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
国家/地区中国
Beijing
时期19/08/1820/08/18

指纹

探究 'Collaborative classification of hyperspectral and LIDAR data using unsupervised image-to-image CNN' 的科研主题。它们共同构成独一无二的指纹。

引用此