TY - JOUR
T1 - Biomarker Extraction Based on Subspace Learning for the Prediction of Mild Cognitive Impairment Conversion
AU - Li, Ying
AU - Fang, Yixian
AU - Wang, Jiankun
AU - Zhang, Huaxiang
AU - Hu, Bin
N1 - Publisher Copyright:
© 2021 Ying Li et al.
PY - 2021
Y1 - 2021
N2 - Accurate recognition of progressive mild cognitive impairment (MCI) is helpful to reduce the risk of developing Alzheimer's disease (AD). However, it is still challenging to extract effective biomarkers from multivariate brain structural magnetic resonance imaging (MRI) features to accurately differentiate the progressive MCI from stable MCI. We develop novel biomarkers by combining subspace learning methods with the information of AD as well as normal control (NC) subjects for the prediction of MCI conversion using multivariate structural MRI data. Specifically, we first learn two projection matrices to map multivariate structural MRI data into a common label subspace for AD and NC subjects, where the original data structure and the one-To-one correspondence between multiple variables are kept as much as possible. Afterwards, the multivariate structural MRI features of MCI subjects are mapped into a common subspace according to the projection matrices. We then perform the self-weighted operation and weighted fusion on the features in common subspace to extract the novel biomarkers for MCI subjects. The proposed biomarkers are tested on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results indicate that our proposed biomarkers outperform the competing biomarkers on the discrimination between progressive MCI and stable MCI. And the improvement from the proposed biomarkers is not limited to a particular classifier. Moreover, the results also confirm that the information of AD and NC subjects is conducive to predicting conversion from MCI to AD. In conclusion, we find a good representation of brain features from high-dimensional MRI data, which exhibits promising performance for predicting conversion from MCI to AD.
AB - Accurate recognition of progressive mild cognitive impairment (MCI) is helpful to reduce the risk of developing Alzheimer's disease (AD). However, it is still challenging to extract effective biomarkers from multivariate brain structural magnetic resonance imaging (MRI) features to accurately differentiate the progressive MCI from stable MCI. We develop novel biomarkers by combining subspace learning methods with the information of AD as well as normal control (NC) subjects for the prediction of MCI conversion using multivariate structural MRI data. Specifically, we first learn two projection matrices to map multivariate structural MRI data into a common label subspace for AD and NC subjects, where the original data structure and the one-To-one correspondence between multiple variables are kept as much as possible. Afterwards, the multivariate structural MRI features of MCI subjects are mapped into a common subspace according to the projection matrices. We then perform the self-weighted operation and weighted fusion on the features in common subspace to extract the novel biomarkers for MCI subjects. The proposed biomarkers are tested on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results indicate that our proposed biomarkers outperform the competing biomarkers on the discrimination between progressive MCI and stable MCI. And the improvement from the proposed biomarkers is not limited to a particular classifier. Moreover, the results also confirm that the information of AD and NC subjects is conducive to predicting conversion from MCI to AD. In conclusion, we find a good representation of brain features from high-dimensional MRI data, which exhibits promising performance for predicting conversion from MCI to AD.
UR - http://www.scopus.com/inward/record.url?scp=85115045887&partnerID=8YFLogxK
U2 - 10.1155/2021/5531940
DO - 10.1155/2021/5531940
M3 - Article
C2 - 34513992
AN - SCOPUS:85115045887
SN - 2314-6133
VL - 2021
JO - BioMed Research International
JF - BioMed Research International
M1 - 5531940
ER -