TY - JOUR
T1 - Augmenting specific capacitance of ammonium vanadate cathode in aqueous zinc-ion batteries via barium doping directed by glutamic acid
AU - Deng, Zhihao
AU - Shao, Wu
AU - Wang, Hengyi
AU - Wang, Yuanbo
AU - Sheng, Jie
AU - Mu, Hongchun
AU - Lian, Cheng
AU - Wu, Wenjun
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/9/15
Y1 - 2024/9/15
N2 - Aqueous Zinc-Ion Batteries (AZIB), as a promising class of multivalent metal-ion batteries, have garnered attention for their exceptional safety and extremely high theoretical capacity. Despite these advantages, their adoption has been impeded by a notable capacity shortfall relative to Lithium-Ion Batteries (LIB). Addressing this challenge, our research leverages glutamic acid as a chelating agent to craft barium-doped ammonium vanadate nanoflowers through a hydrothermal approach, serving as an innovative AZIB cathode material. The incorporation of barium ions has notably expanded the doping distance from 9.817 Å to 12.900 Å, markedly diminishing the diffusion resistance of Zn2+ ions and unveiling a plethora of active sites. These structural enhancements have fostered accelerated ion transport and bolstered redox kinetics. Our fabricated cathode material exhibits exceptional reversibility during the redox transitions between V5+/V4+ and V3+ and the zinc ion doping process. Utilizing BNVO-3 as the cathode, which presents an ideal crystal configuration, the AZIB achieved near-perfect Coulombic efficiency. Impressively, at a current density of 0.1 A g-1, it achieved a remarkable peak discharge capacity of 384.91 mAh g-1. Furthermore, after 1500 cycles at 5A g−1, it maintained an impressive 92.9 % capacity retention. This study heralds a new era for barium-doped vanadium-based AZIB cathodes, characterized by their high stability, reversibility, and capacity.
AB - Aqueous Zinc-Ion Batteries (AZIB), as a promising class of multivalent metal-ion batteries, have garnered attention for their exceptional safety and extremely high theoretical capacity. Despite these advantages, their adoption has been impeded by a notable capacity shortfall relative to Lithium-Ion Batteries (LIB). Addressing this challenge, our research leverages glutamic acid as a chelating agent to craft barium-doped ammonium vanadate nanoflowers through a hydrothermal approach, serving as an innovative AZIB cathode material. The incorporation of barium ions has notably expanded the doping distance from 9.817 Å to 12.900 Å, markedly diminishing the diffusion resistance of Zn2+ ions and unveiling a plethora of active sites. These structural enhancements have fostered accelerated ion transport and bolstered redox kinetics. Our fabricated cathode material exhibits exceptional reversibility during the redox transitions between V5+/V4+ and V3+ and the zinc ion doping process. Utilizing BNVO-3 as the cathode, which presents an ideal crystal configuration, the AZIB achieved near-perfect Coulombic efficiency. Impressively, at a current density of 0.1 A g-1, it achieved a remarkable peak discharge capacity of 384.91 mAh g-1. Furthermore, after 1500 cycles at 5A g−1, it maintained an impressive 92.9 % capacity retention. This study heralds a new era for barium-doped vanadium-based AZIB cathodes, characterized by their high stability, reversibility, and capacity.
KW - Ammonium vanadate
KW - Aqueous zinc-ion battery
KW - Ba doping
KW - Glutamic acid guidance
KW - Specific capacitance
UR - http://www.scopus.com/inward/record.url?scp=85197062898&partnerID=8YFLogxK
U2 - 10.1016/j.jpowsour.2024.234976
DO - 10.1016/j.jpowsour.2024.234976
M3 - Article
AN - SCOPUS:85197062898
SN - 0378-7753
VL - 614
JO - Journal of Power Sources
JF - Journal of Power Sources
M1 - 234976
ER -