TY - GEN
T1 - Approximate kernel selection with strong approximate consistency
AU - Ding, Lizhong
AU - Liu, Yong
AU - Liao, Shizhong
AU - Li, Yu
AU - Yang, Peng
AU - Pan, Yijie
AU - Huang, Chao
AU - Shao, Ling
AU - Gao, Xin
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org).
PY - 2019
Y1 - 2019
N2 - Kernel selection is fundamental to the generalization performance of kernel-based learning algorithms. Approximate kernel selection is an efficient kernel selection approach that exploits the convergence property of the kernel selection criteria and the computational virtue of kernel matrix approximation. The convergence property is measured by the notion of approximate consistency. For the existing Nyström approximations, whose sampling distributions are independent of the specific learning task at hand, it is difficult to establish the strong approximate consistency. They mainly focus on the quality of the low-rank matrix approximation, rather than the performance of the kernel selection criterion used in conjunction with the approximate matrix. In this paper, we propose a novel Nyström approximate kernel selection algorithm by customizing a criterion-driven adaptive sampling distribution for the Nyström approximation, which adaptively reduces the error between the approximate and accurate criteria. We theoretically derive the strong approximate consistency of the proposed Nyström approximate kernel selection algorithm. Finally, we empirically evaluate the approximate consistency of our algorithm as compared to state-of-the-art methods.
AB - Kernel selection is fundamental to the generalization performance of kernel-based learning algorithms. Approximate kernel selection is an efficient kernel selection approach that exploits the convergence property of the kernel selection criteria and the computational virtue of kernel matrix approximation. The convergence property is measured by the notion of approximate consistency. For the existing Nyström approximations, whose sampling distributions are independent of the specific learning task at hand, it is difficult to establish the strong approximate consistency. They mainly focus on the quality of the low-rank matrix approximation, rather than the performance of the kernel selection criterion used in conjunction with the approximate matrix. In this paper, we propose a novel Nyström approximate kernel selection algorithm by customizing a criterion-driven adaptive sampling distribution for the Nyström approximation, which adaptively reduces the error between the approximate and accurate criteria. We theoretically derive the strong approximate consistency of the proposed Nyström approximate kernel selection algorithm. Finally, we empirically evaluate the approximate consistency of our algorithm as compared to state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=85090171031&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85090171031
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 3462
EP - 3469
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -