TY - GEN
T1 - An Ensemble Learning Framework for Vehicle Trajectory Prediction in Interactive Scenarios
AU - Li, Zirui
AU - Lin, Yunlong
AU - Gong, Cheng
AU - Wang, Xinwei
AU - Liu, Qi
AU - Gong, Jianwei
AU - Lu, Chao
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Precisely modeling interactions and accurately predicting trajectories of surrounding vehicles are essential to the decision-making and path-planning of intelligent vehicles. This paper proposes a novel framework based on ensemble learning to improve the performance of trajectory predictions in interactive scenarios. The framework is termed Interactive Ensemble Trajectory Predictor (IETP). IETP assembles interaction-aware trajectory predictors as base learners to build an ensemble learner. Firstly, each base learner in IETP observes historical trajectories of vehicles in the scene. Then each base learner handles interactions between vehicles to predict trajectories. Finally, an ensemble learner is built to predict trajectories by applying two ensemble strategies on the predictions from all base learners. Predictions generated by the ensemble learner are final outputs of IETP. In this study, three experiments using different data are conducted based on the NGSIM dataset. Experimental results show that IETP improves the predicting accuracy and decreases the variance of errors compared to base learners. In addition, IETP exceeds baseline models with 50% of the training data, indicating that IETP is data-efficient. Moreover, the implementation of IETP is publicly available at https://github.com/BIT-Jack/IETP.
AB - Precisely modeling interactions and accurately predicting trajectories of surrounding vehicles are essential to the decision-making and path-planning of intelligent vehicles. This paper proposes a novel framework based on ensemble learning to improve the performance of trajectory predictions in interactive scenarios. The framework is termed Interactive Ensemble Trajectory Predictor (IETP). IETP assembles interaction-aware trajectory predictors as base learners to build an ensemble learner. Firstly, each base learner in IETP observes historical trajectories of vehicles in the scene. Then each base learner handles interactions between vehicles to predict trajectories. Finally, an ensemble learner is built to predict trajectories by applying two ensemble strategies on the predictions from all base learners. Predictions generated by the ensemble learner are final outputs of IETP. In this study, three experiments using different data are conducted based on the NGSIM dataset. Experimental results show that IETP improves the predicting accuracy and decreases the variance of errors compared to base learners. In addition, IETP exceeds baseline models with 50% of the training data, indicating that IETP is data-efficient. Moreover, the implementation of IETP is publicly available at https://github.com/BIT-Jack/IETP.
UR - http://www.scopus.com/inward/record.url?scp=85135372741&partnerID=8YFLogxK
U2 - 10.1109/IV51971.2022.9827070
DO - 10.1109/IV51971.2022.9827070
M3 - Conference contribution
AN - SCOPUS:85135372741
T3 - IEEE Intelligent Vehicles Symposium, Proceedings
SP - 51
EP - 57
BT - 2022 IEEE Intelligent Vehicles Symposium, IV 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 IEEE Intelligent Vehicles Symposium, IV 2022
Y2 - 5 June 2022 through 9 June 2022
ER -