TY - JOUR
T1 - 纳米晶化对锆基非晶合金动态压缩性能的影响
AU - Jin, Chenri
AU - Yang, Suyuan
AU - Deng, Xueyuan
AU - Wang, Yangwei
AU - Cheng, Xingwang
N1 - Publisher Copyright:
© All right reserved.
PY - 2019/12/11
Y1 - 2019/12/11
N2 - Zr-based amorphous alloys are characterized by high glass forming ability, high thermal stability and excellent mechanical properties. The amorphous alloys in thermodynamic metastable state have the tendency to change to metastable state with lower energy or even crystal structure in equilibrium state under certain temperature or pressure conditions. At present, few researches have been conducted on the mechanical behavior of partially crystallized Zr-Cu-Ni-Al-Nb amorphous alloys, especially the fracture behavior under dynamic loading. In this work, as-cast Zr-Cu-Ni-Al-Nb amorphous alloy was annealed to accomplish different levels of nano-crystallization by controlling holding time. DSC, XRD, HRTEM, SEM, quasi-static and dynamic compression tests were utilized to research the effect of nanocrystallization on compressive strength and fracture mechanism of Zr-based amorphous alloy under different strain rates. The results indicated that the volume fraction and size of nanoscale crystalline phase inside Zr-based amorphous alloy increased with the increasing of annealing holding time. The compressive strength of annealed Zr-based amorphous alloy increased first and then decreased with the increase of holding time. The variation of strain rates also affected the compressive strength, which decreased when the strain rate increased from 1×10-3 s-1 to 1×103 s-1, and increased when the strain rate continually increased to 3×103 s-1. Different degrees of nano-crystallization had an impact on the fracture characteristics of Zr-based amorphous alloy. As the degree of crystallization increased, the fracture morphology of compression samples changed from vein-like patterns to quasi-cleavage features and then to river patterns.
AB - Zr-based amorphous alloys are characterized by high glass forming ability, high thermal stability and excellent mechanical properties. The amorphous alloys in thermodynamic metastable state have the tendency to change to metastable state with lower energy or even crystal structure in equilibrium state under certain temperature or pressure conditions. At present, few researches have been conducted on the mechanical behavior of partially crystallized Zr-Cu-Ni-Al-Nb amorphous alloys, especially the fracture behavior under dynamic loading. In this work, as-cast Zr-Cu-Ni-Al-Nb amorphous alloy was annealed to accomplish different levels of nano-crystallization by controlling holding time. DSC, XRD, HRTEM, SEM, quasi-static and dynamic compression tests were utilized to research the effect of nanocrystallization on compressive strength and fracture mechanism of Zr-based amorphous alloy under different strain rates. The results indicated that the volume fraction and size of nanoscale crystalline phase inside Zr-based amorphous alloy increased with the increasing of annealing holding time. The compressive strength of annealed Zr-based amorphous alloy increased first and then decreased with the increase of holding time. The variation of strain rates also affected the compressive strength, which decreased when the strain rate increased from 1×10-3 s-1 to 1×103 s-1, and increased when the strain rate continually increased to 3×103 s-1. Different degrees of nano-crystallization had an impact on the fracture characteristics of Zr-based amorphous alloy. As the degree of crystallization increased, the fracture morphology of compression samples changed from vein-like patterns to quasi-cleavage features and then to river patterns.
KW - Amorphous alloy
KW - Dynamic compression
KW - Fracture morphology
KW - Nano-crystallization
UR - http://www.scopus.com/inward/record.url?scp=85079232405&partnerID=8YFLogxK
U2 - 10.11900/0412.1961.2019.00207
DO - 10.11900/0412.1961.2019.00207
M3 - 文章
AN - SCOPUS:85079232405
SN - 0412-1961
VL - 55
SP - 1561
EP - 1568
JO - Jinshu Xuebao/Acta Metallurgica Sinica
JF - Jinshu Xuebao/Acta Metallurgica Sinica
IS - 12
ER -