TY - JOUR
T1 - Unified IRS-Aided MIMO Transceiver Designs via Majorization Theory
AU - Gong, Shiqi
AU - Xing, Chengwen
AU - Zhao, Xin
AU - Ma, Shaodan
AU - An, Jianping
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - In this paper, we develop a unified framework for IRS-aided transceiver designs under general power constraints in multiple-input multiple-output (MIMO) systems which implement interference (pre-)subtraction via Tomlinson-Harashima precoding (THP) or Decision Feedback Equalization (DFE) technologies. Armed with majorization theory, two fundamental classes of performance criteria, namely K-increasing Schur-concave and Schur-convex functions of the logarithm of Mean Square Error (MSE) of the data stream, are investigated in depth. Firstly, we propose a simplified counterpart of the optimal transceiver design under general power constraints, with equivalence guaranteed by Pareto optimization theory and Lagrange duality. Moreover, the optimal semi-closed form solution to this simplified transceiver design can be attained using the modified subgradient method. Next, we prove that for any Schur-concave objective, the optimal nonlinear THP (DFE) design is in essence the linear precoding (equalization). For any Schur-convex objective, the optimal transceiver design results in individual data streams with equal MSEs, and thereby reduces to the Gaussian mutual information maximization based design. Based on the above conclusions, we further propose an efficient alternating optimization algorithm to decouple the optimization of the transmit precoder and the IRS reflection coefficients, where the classical successive convex approximation (SCA) technique is applied to fight against non-convex subproblems. From the low computational complexity perspective, a two-stage scheme is also developed inspired by the capability of the IRS in constructing favorable wireless links. Finally, numerical results show the global optimality of the modified subgradient method and the excellent performance of the proposed alternating optimization algorithm and two-stage scheme.
AB - In this paper, we develop a unified framework for IRS-aided transceiver designs under general power constraints in multiple-input multiple-output (MIMO) systems which implement interference (pre-)subtraction via Tomlinson-Harashima precoding (THP) or Decision Feedback Equalization (DFE) technologies. Armed with majorization theory, two fundamental classes of performance criteria, namely K-increasing Schur-concave and Schur-convex functions of the logarithm of Mean Square Error (MSE) of the data stream, are investigated in depth. Firstly, we propose a simplified counterpart of the optimal transceiver design under general power constraints, with equivalence guaranteed by Pareto optimization theory and Lagrange duality. Moreover, the optimal semi-closed form solution to this simplified transceiver design can be attained using the modified subgradient method. Next, we prove that for any Schur-concave objective, the optimal nonlinear THP (DFE) design is in essence the linear precoding (equalization). For any Schur-convex objective, the optimal transceiver design results in individual data streams with equal MSEs, and thereby reduces to the Gaussian mutual information maximization based design. Based on the above conclusions, we further propose an efficient alternating optimization algorithm to decouple the optimization of the transmit precoder and the IRS reflection coefficients, where the classical successive convex approximation (SCA) technique is applied to fight against non-convex subproblems. From the low computational complexity perspective, a two-stage scheme is also developed inspired by the capability of the IRS in constructing favorable wireless links. Finally, numerical results show the global optimality of the modified subgradient method and the excellent performance of the proposed alternating optimization algorithm and two-stage scheme.
KW - Majorization theory
KW - Schur-convex/Schur-concave
KW - general power constraints
KW - intelligent reflecting surface (IRS)
KW - multiple-input multiple-output (MIMO)
UR - http://www.scopus.com/inward/record.url?scp=85105861146&partnerID=8YFLogxK
U2 - 10.1109/TSP.2021.3078571
DO - 10.1109/TSP.2021.3078571
M3 - Article
AN - SCOPUS:85105861146
SN - 1053-587X
VL - 69
SP - 3016
EP - 3032
JO - IEEE Transactions on Signal Processing
JF - IEEE Transactions on Signal Processing
ER -