Abstract
The achievement of a flat metasurface has realized extraordinary control over light-matter interaction at the nanoscale, enabling widespread use in imaging, holography, and biophotonics. However, three-dimensional metasurfaces with the potential to provide additional light-matter manipulation flexibility attract only little interest. Here, we demonstrate a three-dimensional metasurface scheme capable of providing dual phase control through out-of-plane plasmonic resonance of L-shape antennas. Under circularly polarized excitation at a specific wavelength, the L-shape antennas with rotating orientation angle act as spatially variant three-dimensional tilted dipoles and are able to generate desire phase delay for different polarization components. Generalized Snell's law is achieved for both in-plane and out-of-plane dipole components through arranging such L-shape antennas into arrays. These three-dimensional metasurfaces suggest a route for wavefront modulation and a variety of nanophotonic applications.
Original language | English |
---|---|
Article number | 141702 |
Journal | Applied Physics Letters |
Volume | 122 |
Issue number | 14 |
DOIs | |
Publication status | Published - 3 Apr 2023 |