TY - JOUR
T1 - Terahertz Ultra-Massive MIMO-Based Aeronautical Communications in Space-Air-Ground Integrated Networks
AU - Liao, Anwen
AU - Gao, Zhen
AU - Wang, Dongming
AU - Wang, Hua
AU - Yin, Hao
AU - Ng, Derrick Wing Kwan
AU - Alouini, Mohamed Slim
N1 - Publisher Copyright:
© 1983-2012 IEEE.
PY - 2021/6
Y1 - 2021/6
N2 - The emerging space-air-ground integrated network has attracted intensive research and necessitates reliable and efficient aeronautical communications. This paper investigates terahertz Ultra-Massive (UM)-MIMO-based aeronautical communications and proposes an effective channel estimation and tracking scheme, which can solve the performance degradation problem caused by the unique triple delay-beam-Doppler squint effects of aeronautical terahertz UM-MIMO channels. Specifically, based on the rough angle estimates acquired from navigation information, an initial aeronautical link is established, where the delay-beam squint at transceiver can be significantly mitigated by employing a Grouping True-Time Delay Unit (GTTDU) module (e.g., the designed Rotman lens-based GTTDU module). According to the proposed prior-aided iterative angle estimation algorithm, azimuth/elevation angles can be estimated, and these angles are adopted to achieve precise beam-alignment and refine GTTDU module for further eliminating delay-beam squint. Doppler shifts can be subsequently estimated using the proposed prior-aided iterative Doppler shift estimation algorithm. On this basis, path delays and channel gains can be estimated accurately, where the Doppler squint can be effectively attenuated via compensation process. For data transmission, a data-aided decision-directed based channel tracking algorithm is developed to track the beam-aligned effective channels. When the data-aided channel tracking is invalid, angles will be re-estimated at the pilot-aided channel tracking stage with an equivalent sparse digital array, where angle ambiguity can be resolved based on the previously estimated angles. The simulation results and the derived Cramér-Rao lower bounds verify the effectiveness of our solution.
AB - The emerging space-air-ground integrated network has attracted intensive research and necessitates reliable and efficient aeronautical communications. This paper investigates terahertz Ultra-Massive (UM)-MIMO-based aeronautical communications and proposes an effective channel estimation and tracking scheme, which can solve the performance degradation problem caused by the unique triple delay-beam-Doppler squint effects of aeronautical terahertz UM-MIMO channels. Specifically, based on the rough angle estimates acquired from navigation information, an initial aeronautical link is established, where the delay-beam squint at transceiver can be significantly mitigated by employing a Grouping True-Time Delay Unit (GTTDU) module (e.g., the designed Rotman lens-based GTTDU module). According to the proposed prior-aided iterative angle estimation algorithm, azimuth/elevation angles can be estimated, and these angles are adopted to achieve precise beam-alignment and refine GTTDU module for further eliminating delay-beam squint. Doppler shifts can be subsequently estimated using the proposed prior-aided iterative Doppler shift estimation algorithm. On this basis, path delays and channel gains can be estimated accurately, where the Doppler squint can be effectively attenuated via compensation process. For data transmission, a data-aided decision-directed based channel tracking algorithm is developed to track the beam-aligned effective channels. When the data-aided channel tracking is invalid, angles will be re-estimated at the pilot-aided channel tracking stage with an equivalent sparse digital array, where angle ambiguity can be resolved based on the previously estimated angles. The simulation results and the derived Cramér-Rao lower bounds verify the effectiveness of our solution.
KW - Terahertz communications
KW - aeronautical communications
KW - channel estimation and tracking
KW - space-air-ground integrated network
KW - ultra-massive MIMO
UR - http://www.scopus.com/inward/record.url?scp=85104187381&partnerID=8YFLogxK
U2 - 10.1109/JSAC.2021.3071834
DO - 10.1109/JSAC.2021.3071834
M3 - Article
AN - SCOPUS:85104187381
SN - 0733-8716
VL - 39
SP - 1741
EP - 1767
JO - IEEE Journal on Selected Areas in Communications
JF - IEEE Journal on Selected Areas in Communications
IS - 6
M1 - 9398858
ER -