TY - JOUR
T1 - Synthesis of Er3+ doped KNbO3 nanocrystals and nanoceramics with outstanding up-conversion luminescence behaviors
AU - Sun, Si Yuan
AU - Ge, Yi Yao
AU - Zhao, Yong Jie
AU - Xie, Zhi Peng
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2/15
Y1 - 2021/2/15
N2 - Rare earth doped perovskite has become one of the most attractive multifunctional materials benefiting from the unique ferro-/piezoelectric, photocatalytic and photoluminescence properties. In this contribution, a series of Er3+ doped KNbO3 nanocrystals with distinctive morphologies, i.e., nanocubes, nanocuboids, and quasi-nanospheres, were prepared via a facile molten salt synthesis method. Furthermore, using the as-synthesized nanocrystals, the Er3+ doped KNbO3 ceramics with homogeneous nanograins were obtained. The growth mechanism of the nanocrystals with different morphologies and sintering process of the nanoceramics were rationally proposed, respectively. It was demonstrated that the morphology of the nanocrystals could be controlled by adjusting the doping amount of Er3+ and the structure of the as-sintered nanoceramics strongly depends on the morphology of the pristine nanocrystals. Impressively, the Er3+-KNbO3 nanocrystals and nanoceramics exhibited excellent up-conversion photoluminescence (UC PL) properties. This work may pave a new way to the structure-controlled synthesis of rare earth doped perovskite oxides and related nanoceramics, which show large potential in applications of novel multifunctional devices.
AB - Rare earth doped perovskite has become one of the most attractive multifunctional materials benefiting from the unique ferro-/piezoelectric, photocatalytic and photoluminescence properties. In this contribution, a series of Er3+ doped KNbO3 nanocrystals with distinctive morphologies, i.e., nanocubes, nanocuboids, and quasi-nanospheres, were prepared via a facile molten salt synthesis method. Furthermore, using the as-synthesized nanocrystals, the Er3+ doped KNbO3 ceramics with homogeneous nanograins were obtained. The growth mechanism of the nanocrystals with different morphologies and sintering process of the nanoceramics were rationally proposed, respectively. It was demonstrated that the morphology of the nanocrystals could be controlled by adjusting the doping amount of Er3+ and the structure of the as-sintered nanoceramics strongly depends on the morphology of the pristine nanocrystals. Impressively, the Er3+-KNbO3 nanocrystals and nanoceramics exhibited excellent up-conversion photoluminescence (UC PL) properties. This work may pave a new way to the structure-controlled synthesis of rare earth doped perovskite oxides and related nanoceramics, which show large potential in applications of novel multifunctional devices.
KW - Er doped KNbO
KW - Nanoceramics
KW - Nanocrystals
KW - Up-conversion photoluminescence
UR - http://www.scopus.com/inward/record.url?scp=85091589905&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2020.156738
DO - 10.1016/j.jallcom.2020.156738
M3 - Article
AN - SCOPUS:85091589905
SN - 0925-8388
VL - 854
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 156738
ER -