Abstract
Research on sodium batteries has made a comeback because of concern regarding the limited resources and cost of lithium for Li-ion batteries. From the standpoint of electrochemistry and economics, Mn- or Fe-based layered transition metal oxides should be the most suitable cathode candidates for affordable sodium batteries. Herein, this paper reports a novel cathode material, layered Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.1-0.5), synthesized through a facile coprecipitation process combined with subsequent calcination. For such cathode material calcined at 800 °C for 20 h, the Na/Na1+x(Fey/2Niy/2Mn1-y)1-xO2 (x = 0.4) electrode exhibited a good capacity of 99.1 mAh g-1 (cycled at 1.5-4.0 V) and capacity retention over 87% after 50 cycles. Optimization of this material would make layered transition metal oxides a strong candidate for the Na-ion battery cathode.
Original language | English |
---|---|
Pages (from-to) | 17176-17183 |
Number of pages | 8 |
Journal | ACS applied materials & interfaces |
Volume | 6 |
Issue number | 19 |
DOIs | |
Publication status | Published - 8 Oct 2014 |
Keywords
- Na-ion batteries
- calcination
- cathode
- layered structure
- transition-metal oxide