Subsonic interface crack with crack face contact

Shaohua Chen*, Guang Xu, Cong Yan

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A steady-state subsonic interface crack propagating between an elastic solid and a rigid substrate with crack face contact is studied. Two cases with respective to the contact length are considered, i.e., semi-infinite and finite crack face contact. Different from a stationary or an open subsonic interface crack, stress singularity at the crack tip in the present paper is found to be non-oscillatory. Furthermore, in the semi-infinite contact case, the singularity of the stress field near the crack tip is less than 1/2. In the finite contact case, no singularity exists near the crack tip, but less than 1/2 singularity does at the end of the contact zone. In both cases, the singularity depends on the linear contact coefficient and the crack speed. Asymptotic solutions near the crack tip are given and analyzed. In order to satisfy the contact conditions, reasonable region of the linear contact coefficient is found. In addition, the solution predicts a non-zero-energy dissipation rate due to crack face contact.

Original languageEnglish
Title of host publicationAdvances in Fracture and Materials Behavior - Selected, peer reviewed papers of the Seventh International Conference on Fracture and Strength of Solids (FEOFS2007)
PublisherTrans Tech Publications
Pages307-314
Number of pages8
ISBN (Print)0878493999, 9780878493999
DOIs
Publication statusPublished - 2008
Externally publishedYes
Event7th International Conference on Fracture and Strength of Solids, FEOFS 2007 - Urumqi, China
Duration: 27 Aug 200729 Aug 2007

Publication series

NameAdvanced Materials Research
Volume33-37 PART 1
ISSN (Print)1022-6680

Conference

Conference7th International Conference on Fracture and Strength of Solids, FEOFS 2007
Country/TerritoryChina
CityUrumqi
Period27/08/0729/08/07

Keywords

  • Bimaterial interface
  • Linear contact model
  • Singularity
  • Subsonic crack

Fingerprint

Dive into the research topics of 'Subsonic interface crack with crack face contact'. Together they form a unique fingerprint.

Cite this