TY - JOUR
T1 - STORM
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
AU - Zhang, Weipu
AU - Wang, Gang
AU - Sun, Jian
AU - Yuan, Yetian
AU - Huang, Gao
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Recently, model-based reinforcement learning algorithms have demonstrated remarkable efficacy in visual input environments.These approaches begin by constructing a parameterized simulation world model of the real environment through self-supervised learning.By leveraging the imagination of the world model, the agent's policy is enhanced without the constraints of sampling from the real environment.The performance of these algorithms heavily relies on the sequence modeling and generation capabilities of the world model.However, constructing a perfectly accurate model of a complex unknown environment is nearly impossible.Discrepancies between the model and reality may cause the agent to pursue virtual goals, resulting in subpar performance in the real environment.Introducing random noise into model-based reinforcement learning has been proven beneficial.In this work, we introduce Stochastic Transformer-based wORld Model (STORM), an efficient world model architecture that combines the strong sequence modeling and generation capabilities of Transformers with the stochastic nature of variational autoencoders.STORM achieves a mean human performance of 126.7% on the Atari 100k benchmark, setting a new record among state-of-the-art methods that do not employ lookahead search techniques.Moreover, training an agent with 1.85 hours of real-time interaction experience on a single NVIDIA GeForce RTX 3090 graphics card requires only 4.3 hours, showcasing improved efficiency compared to previous methodologies.We release our code at https://github.com/weipu-zhang/STORM.
AB - Recently, model-based reinforcement learning algorithms have demonstrated remarkable efficacy in visual input environments.These approaches begin by constructing a parameterized simulation world model of the real environment through self-supervised learning.By leveraging the imagination of the world model, the agent's policy is enhanced without the constraints of sampling from the real environment.The performance of these algorithms heavily relies on the sequence modeling and generation capabilities of the world model.However, constructing a perfectly accurate model of a complex unknown environment is nearly impossible.Discrepancies between the model and reality may cause the agent to pursue virtual goals, resulting in subpar performance in the real environment.Introducing random noise into model-based reinforcement learning has been proven beneficial.In this work, we introduce Stochastic Transformer-based wORld Model (STORM), an efficient world model architecture that combines the strong sequence modeling and generation capabilities of Transformers with the stochastic nature of variational autoencoders.STORM achieves a mean human performance of 126.7% on the Atari 100k benchmark, setting a new record among state-of-the-art methods that do not employ lookahead search techniques.Moreover, training an agent with 1.85 hours of real-time interaction experience on a single NVIDIA GeForce RTX 3090 graphics card requires only 4.3 hours, showcasing improved efficiency compared to previous methodologies.We release our code at https://github.com/weipu-zhang/STORM.
UR - http://www.scopus.com/inward/record.url?scp=85183367325&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85183367325
SN - 1049-5258
VL - 36
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
Y2 - 10 December 2023 through 16 December 2023
ER -